New Computer Fund

Sunday, September 28, 2014

What is the "Right" Solar Reconstruction?

I have played around with Solar a few times and found some interesting things but there is nothing very persuasive considering no one is in any kind of agreement how solar really should be handled.  My biggest issue is that solar has its strongest longer term impact in the near tropicial oceans, rough 40S to 40N and short term impact in the NH land areas from around 25N to 60N.  There is also a "year" issue.  Since a Solar year is not the same as an Earth year and months are a pretty Earth only related time frame, you get a better correlation between solar and the tropical ENSO region using a 27 month lag which would likely be better with some fraction of a month.  Using daily data is a huge issue for my laptop, but would be the best way to go with things.  Anytime you try to determine correlations between averaged data sets there will always be some issue that could be extremely critical if you are talking with the serious statistical guys.

Solar "TSI" is a bit of an issue also.  You really should use spectral intensities which once you add that to daily or some number of hour records gets to be a huge database for the laptop tinkerer.  On top of that, solar reconstructions require different scaling factors due to issue with different data types and lower atmosphere solar has a lot of background "noise" or maybe signal that could be related to atmospheric optical depth.  It is one big ass can of worms.

Still, it is hard to avoid tinkering with solar correlations despite the issues.  I did the above chart just for grins.  The maximum correlation I could find between solar "TSI" anomaly and the "tropical" ocean SST (30S-30N is a bit more than just tropical) is 56% which is nothing to write home about.  It is probably just enough to inspire more looking, but not enough to convince anyone of anything.

The 4 year lag used to tweak the correlation is about half of the settling time Steve Schwartz estimated for the bulk ocean layer.  To me that would suggest that there is a fast response plus a lagged response of about equal intensity.  I have combined different TSI lags in the past and can get just about any correlation I like up to about 87% or so depending on which surface temperature data set and area I pick.  That gives me way too many degrees of freedom to trust.  All is not lost though.

Since there are quite a few published papers noting links between ENSO and reconstructed TSI, the average tinkering Joe cannot be classified a complete whack job because he has "professional" company.  The trick is coming up with a compelling rationalization .. er explanation, of why you used what in your "analysis".

 I am sticking to my multiple lag theory because ocean heat transport would support a number of lags and sub surface insolation which highlights the tropicalesque ocean influence on long term climate.  So instead of using Land and Ocean temperature data, ocean only should be a focus with a possible Ocean plus 8 year averaged Land hybrid temperature data set.  That would basically incorporate the ocean settling lag making the "global" temperature series a bit less noisy without having to cherry pick an averaging period.

This is what MAY be my choice of data sets for comparison to solar.  Note that I used a Pre-CO2 baseline, since ACO2 supposedly didn't kick in until ~1950.  I used two different scales just for this comparison to show that my cherry picked, er selected regions tend to agree.  I used the GISS 1250 km interpolated data though the 250km data would normally be my choice.  Since the highest latitudes aren't included there isn't much difference.  This chart is just to show that using just the 30S-30N tropical ocean, I am not losing touch with global temperatures as much as some might think.  The tropical ocean would be the major source of global energy after all.

There is a good chance this is a far as this will ever go unless I bite the bullet and download daily data.  In case you are wondering, the excluded high latitudes contribute about 18.5Wm-2 (north) and 13 Wm-2 (south) to the "global" effective energy.  The rough average effective energy of the 60S-60N region is ~410 Wm-2 so the exclusion would add about 7.5% to the energy uncertainty versus about 12.5% to the temperature anomaly uncertainty.  One of my pet peeves about manufacturing temperature data in the polar regions is that it artificially doubles the impact in some cases  

Thursday, September 25, 2014

Reservoirs, Sinks and Weird Systems

Now that Lewis and Curry (L&C) have a new climate sensitivity paper out based on the boring old HADCRUT4 temperature data set, the Krigers are concerned that the ~0.064K difference between the kridged data, BEST and C&W might make a significant difference in the L&C results.  The above drawing should illustrate the difference.

Up top you have a closed system where the average temperature more accurately represents the thermodynamic temperature of the reservoirs, hot and cold.  Below you have a Idunno system where the average temperature could depend on the boundary selection.  If you leave a big enough gap so the average temperature represents the average energy of each reservoir, you reduce the size, i.e. heat content, of the reservoirs.  If you get the total heat capacity right, you can blur or smear the average temperature so that it is less likely to represent the average energy.  In other words, there would be some unknown amount of internal sinking.

Thermodynamics allow the luxury/burden of selecting reservoirs, frames of reference, that are most likely in something very close to thermodynamic equilibrium.  Then all the laws of thermodynamics apply, provided your frames of reference are close enough to an equilibrium and/or steady state so that there isn't a lot of unknown energy transfer.

In my opinion, if you don't know for sure, pick another or several other frames of reference so you can compare and contrast results of the various frames.  That is perfectly logical to me, but then who am I really?

If I can only get the results I want in one frame, then I might be wrong.  To defend my choice, I would have to cleverly make up excuses for every thing that happens that should not happen.  Remind you of anything?

Now if the krigers do publish some new results, let's see which crew has more excuses :)

Sunday, September 21, 2014

"Believers and "Hoaxers" will likely Attack Steve E. Koonin's Position on Climate Change

Steve E. Koonin, a theoretical physicist of some standing in the community, has an essay, in the Wall Street Journal on climate change aka Global Warming, entitled, Climate Science is not Settled.  It could have been called Climate Science is not Settled nor is it a Hoax.  Then it would be easier to understand why it will catch flak from both extremes of the climate change debate.  If you are trying to figure out which factions are clueless in the debate, just look for Koonin bashers.  In the essay Koonin lists three challenging fundamentals.

The first, Even though human influences could have serious consequences for the climate, they are physically small in relation to the climate system as a whole. For example, human additions to carbon dioxide in the atmosphere by the middle of the 21st century are expected to directly shift the atmosphere's natural greenhouse effect by only 1% to 2%. Since the climate system is highly variable on its own, that smallness sets a very high bar for confidently projecting the consequences of human influences.

If you consider that the "normal" greenhouse effect produces a lower atmospheric average temperature of about 4 C degrees, the impact of a "normal" GHE would be about 334 Wm-2.  A 1% increase would be 3.4 Wm-2 and a 2% increase would be 6.8 Wm-2.  That is roughly the range of impact based only on the CO2 portion of the anthropogenic changes to the atmosphere.  If you are looking for impact in terms of temperature, then the "average" change in temperature would be 0.7 C for the 1% and 1.4 C for the 2% impacts.  Since this is based only of the CO2 change, these would be "no feedback" estimates for the Greenhouse Effect.

A second challenge to "knowing" future climate is today's poor understanding of the oceans. The oceans, which change over decades and centuries, hold most of the climate's heat and strongly influence the atmosphere. Unfortunately, precise, comprehensive observations of the oceans are available only for the past few decades; the reliable record is still far too short to adequately understand how the oceans will change and how that will affect climate.

There is currently some controversy surrounding the lower than anticipated rise in "average" global surface temperatures.  This hiatus, pause, slowdown or hiccup has been contributed to a variety of potential "causes", but the most recognized is a change in the rate of ocean heat uptake.  Since the "average" energy of the global oceans would be related to the "average" temperature of the global oceans which is about 4 C degrees, no feedback on the global oceans should be about the same as the no feedback impact on the lower troposphere, i.e. global average Down Welling Longwave Radiation (DWLR) which is roughly estimated to be 334 Wm-2.  Challenge one and two are likely linked.

A third fundamental challenge arises from feedbacks that can dramatically amplify or mute the climate's response to human and natural influences. One important feedback, which is thought to approximately double the direct heating effect of carbon dioxide, involves water vapor, clouds and temperature.

Atmospheric water vapor and clouds are directly related to the ocean and lower troposphere temperatures, absolute temperatures not anomalies, so water vapor and cloud "feedback" would be related to any cause of temperature change, not just changes "caused" by CO2.  The third challenge is directly related to the first two challenges.

If you follow the "believers" of dangerous Anthropogenic Global Warming which has been repackage with terms like "climate change" or "climate disruption", they will most likely point out fallacies in Koonin's essay that are related to "beliefs" that all warming and all feedbacks are due to anthropogenic "causes".  If you follow the "hoaxers", they will argue that the "physics" violates some law of thermodynamics or that there is no direct, indisputable measurement of CO2 impact.

Koonin's essay should equally  piss both extremes off which is in my mind a great scientific and social evaluation of the issue.  So anyone that vehemently disagrees with Koonin is likely a whack job or has a political ax to grind.

Those less agenda driven will notice that there are three "states" that would need to be in thermodynamic equilibrium for "standard" physics to easily apply, the ocean temperature would have to be in equilibrium with the lower atmospheric temperature while atmospheric water vapor and cloud conditions would have to be in equilibrium with both of the other two conditions.

If a body A, be in thermal equilibrium with two other bodies, B and C, then B and C are in thermal equilibrium with one another.  Is a simple way to state the zeroth law of thermodynamic.  That would be the only "law" of thermodynamics that might be violated in the climate change debate.  What it boils down to is you have to know the "normal" condition of the atmosphere, oceans and cloud cover if you are going to determine impact of any change in any of the "initial" conditions.  If you pick a variety of "initial" conditions and get a variety of answers that are inconsistent, then you didn't have the Zeroth Law equilibrium requirements met or your theory is wrong.  The smaller the range of inconsistencies, the less wrong you are likely to be.  The first estimate is the 1% to 2% "no feedback" or all other things remaining equal condition of 0.7 to 1.4 C degrees, is the one to beat.